Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization

نویسندگان

  • Uri Shaham
  • Yutaro Yamada
  • Sahand Negahban
چکیده

We propose a general framework for increasing local stability of Artificial Neural Nets (ANNs) using Robust Optimization (RO). We achieve this through an alternating minimization-maximization procedure, in which the loss of the network is minimized over perturbed examples that are generated at each parameter update. We show that adversarial training of ANNs is in fact robustification of the network optimization, and that our proposed framework generalizes previous approaches for increasing local stability of ANNs. Experimental results reveal that our approach increases the robustness of the network to existing adversarial examples, while making it harder to generate new ones. Furthermore, our algorithm improves the accuracy of the network also on the original test data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unifying Adversarial Training Algorithms with Data Gradient Regularization

Many previous proposals for adversarial training of deep neural nets have included directly modifying the gradient, training on a mix of original and adversarial examples, using contractive penalties, and approximately optimizing constrained adversarial objective functions. In this article, we show that these proposals are actually all instances of optimizing a general, regularized objective we...

متن کامل

Certifying Some Distributional Robustness with Principled Adversarial Training

Neural networks are vulnerable to adversarial examples and researchers have proposed many heuristic attack and defense mechanisms. We address this problem through the principled lens of distributionally robust optimization, which guarantees performance under adversarial input perturbations. By considering a Lagrangian penalty formulation of perturbing the underlying data distribution in a Wasse...

متن کامل

Towards Deep Learning Models Resistant to Adversarial Attacks

Recent work has demonstrated that neural networks are vulnerable to adversarial examples, i.e., inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides a broad and unifying view on much of the prior work...

متن کامل

Unifying Bilateral Filtering and Adversarial Training for Robust Neural Networks

Recent analysis of deep neural networks has revealed their vulnerability to carefully structured adversarial examples. Many effective algorithms exist to craft these adversarial examples, but performant defenses seem to be far away. In this work, we attempt to combine denoising and robust optimization methods into a unified defense which we found to not only work extremely well, but also makes ...

متن کامل

A Variational Inequality Perspective on Generative Adversarial Nets

Stability has been a recurrent issue in training generative adversarial networks (GANs). One common way to tackle this issue has been to propose new formulations of the GAN objective. Yet, surprisingly few studies have looked at optimization methods specifically designed for this adversarial training. In this work, we review the “variational inequality” framework which contains most formulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1511.05432  شماره 

صفحات  -

تاریخ انتشار 2015